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Dynamical scaling laws in polymers near the glass transition 

L Sjogren 
Institute of Theoretical Physics, Chalmers University of lkchnology, S-412 96 G6teborg, 
Sweden 

Received 2 October 1990, in final form 11 March 1991 

AbstraeL The modeeoupling theory for the dynamics of supemled liquids predicts a 
universal behaviour for the relaxation properties of the @-process. This is completely 
ruled by generic properties of underlying bifurcation singuiarities in the non-linear equa- 
tions of motion, which in the simples1 case belong 10 rhe cuspid iamily Rk; k 2. The 
theory gives various scaling scenari~ involving one or more parameter scaling functions 
depending on the order k of the relevant singularity. These predictions are compared 
with dielecuic measurements on the polymeric systems polyethylene terephthalate (PET), 
polyethylene qbenzaa te  ( m s )  and polychiomriRuaroethylene (m€). Bolh amor- 
phous and semisIytalline samples are considered, and in all cases we find a quantitative 
agreement between theory and experimental results in the relevant frequency region. 

1. Introduction 

Mode-couplmg theories of the dynamics of supercooled liquids make very precise 
predictions about the frequency and temperature dependence of various correlation 
functions (see Gdtze 199oa for an extensive review). Many of the predictions have 
also been versed even quantitatively by neutron (see Richter er al 1989 for a 
recent summary) and light scattering experiments (Pusey and van Megen 1987, 1990, 
van Megen and Pusey 1991, Gdtze and Sjogren 1991a). In these experimenn one 
measures directly the normalized intermediate scattering function or density-density 
correlation function + , ( I )  = Fq(f)/S as a function of wavevector q and time f or the 
corresponding Fourier transform 4 3 ~ ) .  Here Sq denotes the static structure factor. 

The density correlation function can be rewitten in terms of a generalized longi- 
tudinal Viscosity M,(z) as 

Here entets the well known characteristic frequency of the liquid dynamics: clq = 
( 4 z ~ / S , ) 1 ~ z ,  where Y denotes the thermal velocity. The viscosity M can be decom- 
posed into two parts: M,(z) = Q;[mi(z), + m,(z)], where $(z) describes the details 
of the liquid dynamics on microscopic time scales. It deals essentially with uncorre- 
lated binary collision events. The most important part of the theory is m,(z), which 
describe correlated processes and is expressed in terms of the correlation function 
itself 

k# 
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The vertex V ( q , k p )  > 0 is given by the structure factor SqI and is assumed to 
depend regularly on external control parameters. The expression in (16) describes 
collective effects arising from cooperative motions of any particle and its surrounding. 
Specifically in a dense liquid this term is dominated by the so called cage effect, where 
any atom is to some extent trapped by the surrounding atoms for some time. This 
trapping mechanism introduces time dependent potential barriers, which tends to 
hinder local density fluctuations and thereby increases the viscosity. In the normal 
liquid state these barriers have a lifetime of a few collision times. When the liquid is 
supercooled this trapping mechanism is enhanced and may lead to a localization of a 
cluster of a t o m  for a long time. The resulting increase of the viscosity Mq(z), impliis 
a slowing down of density fluctuation, as follows from (la). So there is an mherent 
feedback mechanism contained in these equations. When the viscosity increases 
density fluctuations or particle rearrangements tend to slow down. A disturbance 
of the atoms surrounding any other atom, will relax slower and this increases the 
effective barriers for particle rearrangemena and thereby the viscosity and so on. 

The trapping mechanism above may in an ideal case give an ergodic to non-ergodic 
transition at a certain temperature T,. This is characterized by the appearence of a 
constant part +& -+ a) =f,, for T g Tc, wheref? is referred to as the non-ergodicity 
parameter. A density disturbance becomes localized and does not decay with time 
when T becomes lower than T,. In the ergodic liquid state for T > Tc, however, 
a density disturbance always decays and +,,(I -+ CO) = 0. In a real situation there 
always exist activated hopping processes, not included in (Ib), which eventually brings 
the system back to the liquid equilibrium state. However, the ideal transition at 
T, may still show up as a constant plateau in 4 ( I )  representing a metastable state 
which can exist for a very long time (Das and daazenko 1986, Das 1987, G6tze and 
Sjbgren 1987, 1988). The underlying ideal transition gives rise to a critical dynamical 
behaviour in 4 (t) and other correlation functions. Close to T, there appear two 
distinct slow relaxation processes, the a- and p-processes, for times I longer than a 
typical microscopic time I,,. The a-process describes the decay of density fluctuations 
on the longest time scale T ~ .  The p-process exists on mesoscopic time-scales between 
the microscopic and a-regions. For this latter relaxation process the modesoupling 
theory makes detailed and non-aivial predictions for the behaviour of +,,(I), or any 
function dxu(qr), where X and Y represent variables with a non-zero overlap with 
the density.. Explicitly one finds (Giitze 1985) 

4d4G =fXd +kw(cl)G(t) (14 
valid in the time region to < f < re. The solution in (IC) implies an universal 
behaviour since the wavevector and time dependence factorizes. The whole relaxation 
pattern is described by one single function G(r) only. 

The function G(r) satisfies the equation 

- SO/z + slG(z) +zC2(z) + (1 + 6 2 )  LT [Gz(t)] (2) 

+ + 73] LT [G3(f)]  (z) - 73z2G3(2) + . . . = 0 

where the Laplace transform is defined as 

m 

G(z) = LT [G(t)] ( 2 )  = i 1 dl e"G(r). 
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The parameters 4 and 7, can be expressed as integrals over the physical coupling 
constants V(q,fq) in (lb), where the latter defines a parameter space of high dimen- 
sionality. The solution to (2a) show interesting properties near various bifurcation 
points belonging to the cuspoid family A,. These are defined hy points in the pa- 
rameter space where some coefficients 6, vanishes. Near such singular points there is 
a subtle low-frequency singularity in C(z), which can then be classhied according to 
the corresponding cuspoid A,. If 6; = 6; = 0 but 6; # 0 we have an A, or Whitney 
fold singularity. For parameter points where also 4 = 0 but 65 # 0 we have an A, or 
Whitney cusp singularity and so on (Go- and Hausmann 1988, Gijtze and Sjogren 
1989a). 

Of particular importance in the present paper is the behaviour of the dielectric 
function c(z) near the glass transition. This function can generally be expressed in 
terms of the electrical conductivity a(z) via 

4a W 2  
.(z) = 1 + --a@) = 1 + -Q(z). 

Z Z 

Here w p  denotes the plasma frequency and J ( t )  = ( j ( t ) .  j(O))/(j,(O)), where 

The summation in (36) extends over all particles i of species a having charge numbers 
Z, and velocities vi&), respectively. Since the electric current in (36) is the time 
derivative of the total electric dipole moment, we can alternatively express E@) in 
terms of the dipole-dipole correlation function (Cook ef al 1970). Introducing the 
memory function M,(t) of the current correlation function we find 

From this equation we can now express ~ ( z )  in terms of the universal function G ( z )  
above. The memory function M,(z) can be calculated within a mode coupling approx- 
imation and is given by non-linear couplings between the partial density correlation 
functions. This approximation was previously derived for the special case of a two 
component plasma (Sjogren et a1 1981), but is also valid in the present case. In the 
&region all the partial densities behave as in (1) and so 

MJ(z)  = - f M / 2  + hMc(z)  (W 
where fM and h, are expressed as wavevector integrals over coupling constants and 
the parameters fob@ and h,(q), where a and b refers to the coupling between 
different components. The essential fact, however, is that, due to the factorization in 
(IC) M,(z) is given by the same function C(z) as the densities. Inserting (M) into 
(k) and expanding in the small parameter bC(z)l< 1 we find 

€(I) = f ,  + h$G(z) + ' ' (3) 

wheref, = 1 + w i / f M  and h,  = w;hM/f2.  Therefore, to leading order the dielectric 
relaxation is also ruled by the function C(z). Equation (9) can he used in the whole 



~ 

5026 L Sjwtm 

frequency range. For lower frequencies on the liquid side M,(z) is ruled by the 
a-process, and satisfies a scaling behaviour M,(z) = M,(z/w,)/w,. This gives the 
a-relaxation scaling for <(I). For sufficiently low frequencies the electrical conduction 
enters when free charges are present, and ~ ( z )  = 1 + i4ru0/z with uu = w~/4r/Ml(O). 

The general cuspoid A, has a canonical representation with k - 1 relevant pa- 
rameters S o , .  . . ,&-*. For the dynamical solution the cusp parameter pk = -4 > 0 
also enter. AU other parameters in (2) become irrelevant for the leading order 
results. The Whitney fold singularity A, is therefore completely specified by just one 
separation parameter U = a,, and the exponent parameter X = 1 - c2 The function 
G(I) is given by a conventional scaling law 

fa) = C,&(f / tJ  ' (W 
The solution depends, through the correlation scale c, and the time scale I,, crucially 
on the distance from the transition point measured via the separation parameter U. 
The masterfunctions g, satisfy the equation (GGtze 1985) 

7 + Cgz({) + AiJmdreiCTg:(r) 0 = 0 (46) 

where C = a, and r = f / f ,  are rescaled variables. Here rt refers to U 2 0, respec- 
tively. The scaling function therefore depends only on the exponent parameter A, 
which is charaaeristic of any particular system. The solution of (46) can be obtained 
for any value of X (G6tze 1990b). We can also obtain explicit expressions for short 
and long rescaled times. In the former case one finds 

g*(r < 1) = 1 P .  ( 5 4  

For long rescaled times one finds 

g + ( r  B I) = 1 / v ' i T i  
g-(T B 1) = -B# 

where B > 0. The exponents a and b are given by the exponent parameter A by way 
Of 

~ = r ~ ( i - ~ ) / r ( i - 2 n )  =rZ(i+b)/r(i+26) (6) 

where 0 < a c 
The behaviour in (Sa) implies that for short times on scale to the relaxation is the 

same for the liquid and the glass, or non-ergodic state. This critical decay describes 
the motion of molecules in an almost frozen environment For these times one cannot 
decide whether or not the environment is stable since the life-time of the cages is 
longer than f,,. For longer times and T < T, the system arrests. For T > T, the traps 
break down, and this is described in the initial stage by the von Schweidler law 

and 0 < b c 1. 

+xv(4') =fXd - hm(s)B( t / fb)* .  (7) 

The new time scale is the predicted scale for the a-relaxation process. The decay 
in (7) can only hold for t / tb  < I. For larger times on scale r: = r, the dynamics is 
ruled by the a-process, which will not be considered here. 
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The various scales are predicted to follow algebraic variations with U. The corre- 
lation scale in (&) has a simple square root variation 

Ca  = 47. (a) 

WO = 1/I, = lul'/=/t" (W 
w; = 117, = lUIY/f" (e) 

Similarly the frequency scales wa = 111, and w i  = l/r, are given by 

-( = 1/20 + 1/2b 

Close to the transition point we can express the mathematical control parameter U in 
terms of the physical control parameter 6 = 1 - TIT,. Two kinds of behaviour appear 
with quite different properties (Catze 1984, Got% and Sjdgren 1989a), depending 
on whether the non-ergodicity parameter fq is continous or discontinous across the 
transition 

U X f 2  &(4)=0 t y F A  (94 
f&(q)>O typeB. (9b) 

Their difference can be Seen clearly in the static susceptibility x(q)  = xT(q)[l - f ( q ) ] ,  
where x T ( q )  denotes the thermodynamic susceptibility. For the type A fold we find 
that x has a cusp at T = Tc, while for a type B fold it has a discontinuity. The former 
case is characteristic for a spin-glass transition (Binder and Young 1986). while the 
latter case appear in conventional glasses. Relation (9a) means that U > 0 on both 
sides of the transition. Therefore for a type A fold only g+ in (46) enters, and a 
von Schweidler deca does not appear. For a type B fold the characteristic behaviour 
in (Sa) implies a increase off, for T < T,. Such a behaviour has been 
verified quantitatively in polybutadiene by Frick et a1 (1990). 

For higher order cuspoid singularities A, the equation for G(t)  can also be solved, 
even though the solution becomes more complex (GGtzc: and Sj6gren 1989b). The 
general cuspoid A, of order k 2 3 is characterized by 6; = 0, I = 0,. . . , k - 1 but 
p, = -6; j4 0. Let us introduce the transformation 

G ( f )  = f2f[ ln(~/41 (loa) 
1/2(k-2)  where p = [2 f i /3pk(k  - 2)'] 

the differential equation for the functionf (GGtze and Sjogren 198913) 
and I ,  is a microscopic time. We then obtain 

where g, = 46,-,/pk(k - 2)'y are the mathematical control parameters vanishing at 
the critical point. The solution to (lob) gives the hyperelliptic functions which satisfy 
the general scaling law 

f & ; g 2 > g 3 > ~ . . & )  = ~ f f ( s y ; ~ - z * g , ~ ~ - 3 x P 3 ~ . ~ . , ~ - l c r p k )  ( 1 W  
with x = 2 / ( k  - 2).  At the critical point g, = 0 all 1 we find from (lob) the critical 
decay fb) = l/y" which implies 

q) =G + Q2/1d(~/1,) ' (11) 
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Away from the critical point there are various regions in parameter space with quite 
different dynamics. In particular we can find the various behaviour close to the 
coordinate axis gp Here the solution describes effectively a crossover from the critical 
decay for I, < t < t, where 

4 = vu, =~,exp[~-*(l~,/~,-fI"L)l ' (12) 
to a new algebraic decay in In(l/t,) for f > 1,. Denoting the cusp temperatures 
collectively by To we have 6, cx lT/To - 11, and the crossover times in (12) diverges 
when approaching To with a Vogel-Fulcher like dependence. ?b obtain the Laplace 
transform from (lOn) we can use the general property 

LT[L(r)] (z) = -(l/.z)L(i/z) (W 
that is valid asymptotically for IzI -+ 0. Here L(t) denotes a slowly varying function 
defined by the property L(n)/L(r) -* 1 for t 03 for all x > 0 (Feller 1971, ch 13). 
From this relation we find in leading order when Izl - 0 

G(z) = -(l/z)p2f [In(l/ - ur , ) ]  . (136) 
Introducing this into (3e) with z = w, we can solve for the real and imaginary parts 
of c(w) using the fact that In(l/wil) >> r/2 for w -+ 0. This gives 

Here 
For simple systems composed of spherical molecules all paramerers entering in 

the solution can be calculated. In particular the results in (4)-(6) were succesfully 
compared with photon correlation measurements by van Megen and Pusey (1991) 
on a hard-sphere colloidal system (Gdtze and Sjdgren 1991a). However, the results 
above do not depend on the detailed structure of the fluid, but only on the existence 
of a hidden topological singularity in the non-linear equations of motion. Also the 
basic physical mechanism entering the equations, with a trapping of particles in cages 
formed by their neighbours, must have a general validity. Therefore one may spec- 
ulate that the same kind of singular dynamics appear in all liquids, irrespective of 
whether they are simple monatomic liquids or more complex systems like e.g. poly- 
mers. The only condition would be that one is able to come close enough to a singular 
point in the parameter space of the specific liquid. In particular, if experimental data 
on complex liquids exhibit the behaviour listed above, it supports the conclusion that 
the theory is of more general validity than expected from its derivation. 

The purpose of the present paper is to test this hypothesis and compare the 
theoretical predictions with experimental data for some polymeric systems. In general 
the location of the singular points T, or To and the relevant frequency interval for 
the validity of the p-relaxation scaling laws are not known This is due to our lack 
of understanding of the microscopic dynamics for complex systems like polymers, i.e. 
the time scales I" and f ,  in (8) and (10) are not known. However, we can now work 
backwards and test whether or not a given spectrum follows the theoretical pattern. 
The regular short time scales to and I, and other parameters must in general be 
used as phenomenological fitting parameters. Eventually these parameters may be 
calculated from a microscopic theory (Schweizer 1989a,b). 

= h,p2, and f'b) = dfb)/dy denotes the derivative. 
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2. Results 

21. The fold 

The results for the Whitney fold or A, singularity, are most clearly revealed in the 
susceptibility or the dielectric loss. The critical decay in (Sa) implies a decrease of 
c"(w) D: w" with decreasing frequency, while the von Schweidler law (5c) implies a 
subsequent increase c"(w) D: w-*. Hence for T > T, the &decay process can be 
detected as a minimum in the dielectric loss ~ " ( w ) ,  which is located above the (I- 
peak at some frequency wmb. Such a minimum has been observed in polyethylene 
therephthalate (PET) (Ishida et uf 1962) and analysed previously within the present 
scenario (Sjogren l W a ,  Gotze and Sjogren 1991b). A minimum in the relevant 
frequency region, has also been observed in polyethylene oxybenzoate PEoB (Ishida et 
a1 1962). and the rescaled dielectric loss c"(w)/& versus w/wmin, for an amorphous 
sample, are shown in figure 1. Here the scaling parameter denotes ~"(w.~~). 
Clearly the experimental data for different temperatures fall on a single master curve 
around the minimum, and the frequency interval where the data points coincide 
expands for decreasing temperatures. The solution to the scaling function in (4) with 
X = 0.80, giving the exponents a = 0.28; 6 = 0.48, is also shown as a full curve. There 
is an overall quantitative agreement between experiments and theory, even if there is 
some discrepency for higher frequencies. This may indicate that the appropriate value 
for X should be choosen somewhat smaller, but additional measurements for higher 
frequencies are necessary in order to make a more detailed comparison meaningful. 
Figure 1 verifies that the experimental data satisfies a scaling law, and also that the 
shape of the corresponding master function agrees with the predicted one. 

d",. 
Figum 1. Rescaled dielectric Ims d'(w)/& versus w/w,i, fct amorphous PEOB taken 
from Ishida ef ol (1962). The various symbols refer to di6erent LemperaIures as indicated 
in the figure. Also included is the theoretical master curve obtained from (46) for 
X = 0.80 (full curve). 

The two scales €gin and wmin describe the variation of the minimum as the tem- 
perature changes. From (8) we find the predicted variation 

E;in D: c, = 161'/* (W 
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From (&) we also find the predicted variation of the positions of the a-peak maxi- 
mum, U,, 

w,, x w; o( 1.17 . (154 

T T 
F@rc 2. (a) Full circles. experimental values of (&)* versus temperature T. The 
straight line is the best fit lhrough the data points: it indicates the theoretical prediction 
in (Sa) and ( 1 5 ~ ) .  The inlerSeCtion with the abscissa gives the critical temperature T.. (b)  
Full circla show 4. (MI scale) and open circles U'& (right scale) versus temperature 
as obtained from experimental data. The full and broken straight lines are the k t  fits 
through the respective data points, and gives the theoretical predictions in (8) and (15). 
The i n l e m t i o n  with the abcissa again gives the critical temperature T,. 

These resub are tested in figure 2. In figure 2(a) we show c;i: versus temperature 
T. According to (ISa) the data should fall on a straight lie, which is approximately 
the case as shown by the full line. From the intersection with the T-axis we get an 
estimate of the critical temperature T, = 84.5 "C Similarly we show in figure 2(b) 
w",s, (full circles) and w:G (open circles) versus T .  The data fall again on straight 
l i e s  indicated by the full and broken lines, and this supports the results in (15b) 
and (15). From the intersection with the T-axis we obtain the estimates T, = 81 'C 
and T, = 85 "C, respectively. The three values of T, agree to within a few degrees 
and gives the critical temperature T, = (83 f 2) O C  The values of the exponents 
a = 0.28 and b = 0.48 found above can be tested by plotting log& versus logw,, 
and logw,,. The former plot should give a straight line with slope a and the latter a 
straight line with slope ab/(a+b).  Figure 3 shows the maxima positions (full squares) 
and the minima positions (full circles) for PEOB. The broken and full lines have slopes 
ab/ (a+b)  and a respectively. Clearly the data are compatible with the value a = 0.28 
and ub/(a + b) = 0.18. A white noise background followed by a stochastic relaxation 
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Figure 3. logc2, versus logw&. (full circles) and 
logw,, (full squares). ?he full and broken straight 
lines have slopes U = 0.28 and ab& + 6) = 0.18, 2 4 6 

w%,",* respectively. 

instead of the critical spectrum and a von Schweidler law, would also result in a 
minimum between the high-frequency phonon peak and the or-peak. The resulting 
values for the exponents in that case a = b = 1 are clearly incompatible with the 
experimental data. 

'lbgether with the previously analysed PET data, the present analysis of PEOB partly 
verifies the theoretical results in section 1. However, for a real quantitative test of the 
theory we need more data at higher frequencies for both systems. Also measurements 
at several more temperatures are needed; in particular around the critical temperature 
T,. For PEOB we find for the lowest temperature 87 ' C  the separation parameter 
U w -0.05, which is still a rather large value. For PET the lowest temperature 
corresponds to a separation U M -0.03. Measurements for temperatures below T, 
but above T would also be of great interest. In this region hopping processes must 
play a signdcant role, and a new scaling scenario have been predicted in this case 
(Gotze and Sjijgren 1987, Sjogren 199ob). One expects also that other systems will 
show the characteristic behaviour found for these polymer systems, provided the 
relevant temperature and frequency regions are investigated. 

22. The cusp 

There are also experimental results on samples of PET and PEOB with various degree 
of crystallinity (Ishida ef ul 1962). The dielectric relaxation still originate from the 
amorphous part, and show the same general features as in the amorphous samples. 
In figure 4(u) we show as an example the rescaled data for PEOB with 38% degree of 
crystallinity, referred to as PEOB-IV by Ishida ef al (1%2), together with the theoretical 
master curve with X = 0.80. For this value of the exponent parameter the theoretical 
curve can fit the high-frequency data, but fails for the low-frequency data. Conversely 
choosing a larger value of X we can obtain better agreement for low frequencies, 
but will then fail for high frequencies. The corresponding values of (&Jz versm T 
are shown in figure 4(b) as full circles, and the intersection with the abscissa gives 



T 

Fylm 4. (a) Rercaled dielectric loss e"(w)/.;. VCRUS w/w.i. for P W B  with 38% 
de- of crystalliniry taken from lshida a a! (1962) The various symbols refer to the 
Merent temperatures indicated in  the figure. The full cuwe is the thmretical master 
curve obtained from (a) for X = 0.80. (b) The full circles and full squares are the 
upcrimental va lus  of (eL,m)z plotted versus temperature T for the samples PeOBiV and 
PPP.IV mpectiwly, The lull and broken straight lines are the bat  fit through the data 
p i n k  The inlersection with Ihe abscissa gives the respective critical temperatures To. 

the critical temperature T, = 91 'C So the data for PEOB-IV are still consistent with 
(I%), but it does not follow the predicted master curve even though the separation 
parameter for the lowest temperature is the same as for the amorphous sample shown 
in figure 1, ie. U !z -0.05. Similar resulls are found for PET with 51% degree of 
crystallinity (PET-IV). The values of (cgi,J2 are also shown in figure 4(b) as full squares, 
and gives Tc = 92 "C. The low-frequency behaviour in figure 4(a) with a rather flat 
region indicate that these data are close to a cusp point characterised by X = 1. Since 
a cusp is the meeting point of two fold lines the characteristic relaxation behaviour 
for such a point contain also, as a special case, that relevant ~~ for ~~~~~ a fold with X ss 1. 
Clearly when X 4 1 the region of validity of (5-6) decreases. 

The relaxation scenario for the A, singularity or the cusp, is obtained from the 
solution of (lob) which gives the Weierstrass elliptic function 

G(4 = P2P Pn(t/4); gz, g3l ' (16) 
valid in the time region f I  < f < re. Actually since the Weierstrass function is 
periodic, the solution may alternatively break down at the half-period where p = el 
and e, is the largest real root to 4e: -&e, - g, = 0. The cusp is generically specified 
by two canonical separation parameters .$ = 6, and 7 =~ 4, which appear in (16) as 
g, = 47/p3p4 and g, = 4 / p 3 p 6 .  From (14a) we find for the dielectric constant 

€'(U) =f, - w[W/ufl);  g2, g31 =f, - Gp[u; *12(r/4)'/',+4] (170) 

E ,, (U) = -1, c~'Pn(l/utI); g,, g3] = +myp'[u; ~k12(r/4)'/~, Zk4](176) 

and for the dielectric loss 
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where 

The second relations above where obtained using the scaling property in (I&) with 
scaling parameters = lc/p311/6/p. The scales entering in (17) are predicted to have 
the following temperature dependence: 

where Tu denotes the location of the cusp at 6 = rl = 0. lb reach this point one 
needs in general U, vary two control parameters like temperature and pressure. 

The parameter r in (17) is defined as r = l$/27&1. The solution in (17) is 
therefore invariant on the lines r =const. In particular r = 0 and r = 03 corresponds 
to the coordinate axis g, = 0 and g, = 0 respectively. Along these lines the Weierstrass 
function has relatively simple properties as well as on the line A = & - 27& = 0 
corresponding to r = 1. Here A denotes the discriminant and the points where 
A = 0 defines the fold lines. The relevant parameter space near a cusp is shown in 
figure 5, where the cusp point is located at the origin. The two fold lines are given 
by the full and broken curves respectively. They correspond to type B folds, but the 
latter represent a dynamically unstable solution. The thin lines in the fourth quadrant 
show invarianm lies where r = 0.2, 0.4 and 0.8. Also shown as dotted line is the 
case r = & which appear later. Invariance curves can also be drawn in the other 
quadrants, but is not needed here 

gz 
Figurr 5. Relwant parameter space gz, g for a cusp singularity. The cusp point is 
located at the origin. The full line labelled B represents a type B fold, and the broken 
line is a wmponding unstable fold. The chain line labelled A represents a type A fold. 
The thin full curves and the dotted curve are invariance lines where r = 0.2, 0.4. 0.8 
and 1/16 respeaively. The symbols show the paths in parameter space for the various 
investigated sysems as described in the text. 
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Figore 6. (a )  c"(w) versus w for PEoBIv. The various symbols cumpond to lhoae in 
figure 4(n). The full c u m  show lhe theoretical rcsulu obfaincd from (17b). (b) As in 
(0) bul for PET-Iy. The various symbols refer lo Imperalures given in the figure. 

Using (17b) we find the dielectric loss curves shown in figure 6(a) and 6(b) for 
PEOB-rv and PET-IV respectively. To obtain these we must specify the four parameters 
cc, Ill g, snd g,. The latter two are the relevant control parameters which describe 
some path in parameter space when the external control parameter T is varied. These 
parameters can be determined approximately from the values of <gin and for the 
respective temperatures and samples. These extreme values can be obtained from 
(17b) by differentiating and solving for the zeros of p". Inserting the result into (17b) 
and solving for g, and g3 yields 

A flat portion in E" implies therefore that g, W O .  The values obtained from (19) for 
g, and g, are shown in figure 5 for PEOB-IV (full circles) and PET-Iv (full triangles). 

The remaining parameters cc and t1 can in principle be extracted from the large 
frequency decay. These parameters should ideally be constant, but in practice they 
may have some smooth temperature variation. From (17) we find the critical be- 
haviour at large frequencies for both the real and imaginary parts 

In the present case there was not sufficient data at high frequencies to test this 
prediction, and fc and I, was adjusted to get an optimal fit. For PEOB-IV this gave 
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zC = 20.0 and I/;, = 25w{,, where w i ,  denotes the position of the @-peak This 
was extrapolated from lower temperatures and was found to be log(&J2+) = 
17.5- 3350/T. The corresponding values for PET-N was = 12.0 and I/;, = I ~ L  
with Iog(w&/2m) = 15.1-2840/T. So eC is found to be constant, but the microscopic 
time f I  has a regular Arrhenius temperature dependence. For both systems w l  varies 
by almost a factor of two for the temperature interval considered This regular but 
relevant temperature dependence of the microscopic time-scale f l  has not yet been 
understood from the mode-coupling equations, and t l  has to be used as a fitting 
parameter. 

Clearly the results for E"(.) obtained with these parameters agree very well with 
the experimental data for both systems. The solution breaks down for low frequencies 
w = wg as expected, and the theoretical curves approach rapidly zero at the half 
period of p. The high-frequency wing of the a-peak can actually be fitted somewhat 
better by adjusting g, and g,. For PET-IV the high-frequency points at the lowest 
temperature T = 94.5 "C, do not follow the general behaviour found for the other 
temperatures. For this temperature we used the value cc = IO, but there are still some 
discrepencies. From figure 5 we see that the paths for both systems are practically 
the same, and approach the fold line when temperature is lowered. Since the path 
crosses several constant-r lines it is not possible to collapse the data onto one single 
master curve. For even lower temperatures the paths will cross the fold line at the 
respective critical temperatures T,. Even if the paths do not approach the cusp point 
at the origin, this has a strong effect on the shape of the spectra. However, sufficiently 
close to the fold line the Weierstrass function will reduce to the previous scenario for 
the fold. 

From figure 4(b) follows that the minimum E& still follows a square root variation 
with the separation from the fold. This can be understood if we introduce the 
canonical coordinates U and X for the fold line instead of q and E above. The former 
ones can describe the relevant region g, > 0, and the transformation is given by 
q = (1 - X)3/3p3; ,$ = U - &(i - X)3//1: (Gbtze and Sjdgren 1989b). Using these we 
find = $ r c , ~ ~ .  Therefore the square root variation of the minium, 
characteristic for a fold, still holds near a cusp even though the shape and position 
of the minimum are changed. 

Another system where a cusp scenario can explain the relaxation data is poly- 
chlorotrilluoroethylene PCIFE measured by Nakajima and Saito (1958) and Scott et 
a1 (1962, Hoffman et a1 1966). This is a polymer with no sidegroups capable of 
independent orientation and the dielectric relaxation effects in P ~ E  must therefore 
be attributed to motions involving portions of the chain backbone. ypical results by 
Scott et 01 (1962) for E' and E" at T = 118 ", 100 and 75 O C  are shown in figures 
7(u) and 7(b).  These data refer to a quenched sample with 44% crystallinity with 
glass transition at Tg % 50 OC (Hoffman et ai 1966). The observed relaxation can 
be attributed to the amorphous liquid region. In figure 7 we have also included the 
theoretical results as full curves. These were obtained with ec = 3.5, I/;, = 2oW&,, 
with log(w7-/2+) = 16.7- 4054/T. Here wLar denotes the position of the main loss 
peak, which was attributed to the 7-process (Hoffman el ~l 1966). In the temperature 
interval above, wLax changes by a factor of twenty, so here tl cannot be treated as 
a constant The values of g, and g3 were obtained from (19) and are shown as full 
squares in figure 5. 

Figure 7 shows that there is very good agreement between experiments and theory 
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Flgvrc 7. (U) ~ ' ( w )  Venus w for FCIFE at T = 118 OC (open circles), T = 1W ' C  (open 
triangles) and T = 7 5  OC (open squares) from the measurements of Scott R ai (1962). 
The full curves are the theoretical results from (170). (b) The corresponding data for 
<"(CO) together with the theoretical rcylts in (176) (full c u m ) .  

oi", *%U 

Flgvre S. (a) fc - c' venus w/wmu for the data shown in Rgure 7(0), and with the 
same symbols. The full curve represent the critical decay in (24la) with cc = 3.5 and 
l / t*w- = 20. (6) ."(CO) versus w/w., lor the same data as in @re 7(b). The full 
curve show the predicted behaviour in (206) with the same parameters as in (U). Here 
w,. denotes the position of the main Ims maximum in c". 
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in a frequency interval extending four to  six decades below the main peak. The pa- 
rameters zc and f I  could in t h s  case be extracted from the high-frequency behaviour 
where (20) must hold. Evcept for the regular variation of the parameters (20) implies 
a temperature independent shape of the spectm. It is an essential test of the theory 
that the data of Scott ef ul satisfy this properly. This is verified in figure S(u) and 
8(b) where we showf, - z'(w) versus w/wLu and ~ " ( w )  versus w / w L  respectively, 
together with the theoretical prediction in (20) (full curves). Clearly all data points 
fall on temperature independent master curves in a rescaled frequency interval of 
more than one decade below the peak, and the shape is very well given by (20) with 
parameters z, = 3.5 and l / f l w z m  = 20. The data are therefore compatible with a 
temperature independent critical spectrum provided one allows for a relevant Arrhe- 
nius temperature dependence for the microscopic time I,. For the lowest temperature 
T = 75 OC the data follow the critical behaviour for three to four decades, so t h s  
point is rather close to the cusp as is also seen in figure 5. The parameterf, has a 
smooth almost linear temperature dependence, and is shown in figure 11 later. 

The full squares in figure 5 are close to the line g, = 0. In this case the 
low-frequency behaviour of (17) can be found explicitly. Along this axis there is 
a crossover from the critical behaviour in (20) for frequencies I/f, > w 2~ wc, where 
we = w3 in (12), to the low-frequency behaviour 

E'(w) = f, - X' + 2.;' In( 1/wt,) 

."(W) = 7rc; (216) 

(214 
and 

valid for w << wc. A characteristic property of a cusp, in the parameter region g, ~3 0, 
is therefore a linear increase as Inw with decreasing w for the real part, and a constant 
frequency independent behaviour for the imaginary part at low frequencies. These 
general features are seen in figure 7 

The path in parameter space followed by PCTFE is clearly different compared with 
the previous ones. From figure 5 we see that the full squares approach the origin when 
temperature is lowered, and follow approximately the dotted curve corresponding to 
the value r = &. Therefore the shape of the spectra should show more cusp l i e  
features than those in figure 6, and also be almost invariant for different temperatures. 
This implies that it must be possible to rescale the data for the various temperatures 
so that they fall on one single master function Also the scales should have the 
temperature dependence in (18). Such scaling plots of the data of Scott ef ul are 
shown in figures 9(u) and 9(b) for e' and E" respectively. In the frequency region 
w < w L  all data falls on master curves, and the region where the points coincide 
expands when temperature is lowered. The full curves show the predicted master 
functions given by p[u; 3, -41 and - $ p ' [ u ;  3, -41 respectively corresponding to the 
value r = A. The small scattering of the data points around the full curves arises 
because the path in parameter space do not exactly follow an invariance line r =const 
when temperature is varied. The small deviation from a straight line for large values 
of U in figure 9(u) and the small fluctuations around a constant in figure 9(b) in both 
the data points and theoretical curves arises because we are slightly away from the 
line g, = 0. Increasing the value of r towards r = 1 will enhance these effects as 
shown in figure 6. The low-frequency peaks in figure 6 clearly reflects the welaxation 
process and are characteristic for the behaviour near a fold-line. From figures 7 and 
9 we conclude that the low frequency loss peak  are described rather well by the 
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F@m 9. (a) Rescaled dielectric constant [r, - e’(w)]/ci versus U = In(l/wrt)/yc with 
symblsas in figure 7. ’Ihe full curve is lhe predicled master cuwe p[u; 3, -41 in (17~). 
(6) R a g l e d  dielectric loss P ( w ) / m y  versus U lor the data in Egure 7(b). The full 
cume is the predicted master function -$p ’ [u ;  3, -41 in (176). The theoretical curyes 
are cut off slightly below Ihe half.period of P. 

p-relaxation function, which was not the case for the previous systems in figure 6. 
Therefore in this case the low-frequency peak should rather be treated as a part of 
the p-process (Hoffman ef u l  1966), and reflecs the dynamics of the g, = 0 line 
rather than the fold line in figure 5. 

The parameters used in the scaling plots above are shown in figures 10 and 11 
below. The parameters c i  and yc used to rescale the real part are shown as open 
squares in figure 10. These were extracted in the following way. From (210) we see 
that the slope of the linear part in E’ for low w is given by a;‘. This slope could be 
determined for the various temperatures, and the resulting values of cy are shown as 
crosses in figure lla. From this value of c; and the value of the critical amplitude c, 
above, we can determine c; and yc since from (18) 

c;’ = GlYf (22)  

G$ = cc. (2D) 
and 

The last relation implies that ye = In( l/wefI) is determined from the frequency where 
the two asymptotic results in (ZOa) and (Zla) intersect Similarly from the almost 
straight line part in figure 7(0) we can determine the regular constant f, using (210) 
and the previous values of 5, ye and t , .  The resulting values are shown in figure 11, 
and was used before to obtaul figure i3(a). The parameters c;’ and yE used to rescale 
the imaginary part were extracted independently from El’ and are shown as open 
circles in figure 10. The values of c; was extracted from the average value of the 
plateau in E”(W) for low frequencies. From these values we determine corresponding 
values of ye from the intersection of this plateau with the critical spectrum or from 
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Figom 10. Scaling parameters ck (open squarer) and c: (open circler) Bnracted from 
d and e'' respectively. These parametem were used to obtain the scaling plots in 
figure 9. The cmsses show the values of cf extracted I" the slope in e' and the plus 
signs the values of c i  exWacled from 0'. The full cum shcw the predicted behaviour 
c; U [TIT0 - 11113 and cf U lT/To - 111/2 with TO = 62 'C. (b) ?he scaling parametcr 
l/y( obtained from L' (open squares) and e'! (open circles) respectively. The full cuwe 
show the predicted behaviour l/y( c< ITIT0 - 1I1l6 with To = 62 OC as in (U). 

F-' 

r: 2.951 2.90 

. 
0 

0 

Flgure 11. ?he values of fc used in the rescaling of 
L' in figures (Q), (Sa) and (1%) The open circles 
refer to the data of Scott n al (1962), and the full 
circles to t h a t  of Nakajima and Sail0 (1958). 

100 

T 

(22) $$ = e,. With the values of cy and ye. obtained in this way from e'' we can also 
determine a second set of values for c; usmg (22~). These are shown as plus signs 
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in figure lo(@. Clearly the two sets of scaling parameters extracted independently 
from c' and c'' are identical, as they should be. We can now compare these data with 
the theorerica1 predictions in (18). Plots of the parameters 4, $' and l/yt raised 
to the exponents 3.2 and 6 respectively gave, with the reservation for the lmited 
number of points, straight lines wich intersected the T-axis at a common temperature 
Tu = (62 f 4) "C So the data are consistent with a cusp at a temperature T, twelve 
degrees above the calorimetric glass temperature Tg. The predicted variation of 
the scaling parameters obtained from the straight lines are shown as full curves in 
figure 10. Clearly more data points in the region around Tu are necessary in order 
to verify or disprove the predicted functional forms. There also exist data for lower 
temperatures T < Tu (Scott et af 1962). These were also consistent with the critical 
spectra in (20) with the same value of r ,  but with a value cC w 5. So there is an 
asymmetry in the data not predicted by the mode coupling theory. Similar results 
were found in orientational glasses by Michel (1987). and there this problem was 
resolved by allowing for a change in the coupling constans when the static response 
changes. No scaling plots could be obtained for T < To since the low-frequency 
data ran out of the experimental window. Therefore experimental data for lower 
frequencies are necessary in this case. 
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Flgorc 12 (U) Rscs led  dielectric constant rc - <'(U)] /c; versus U = ln(l/d,)/yt From 
the data of Nakajima and Sail0 (1958) for the various temperatures indicated in the 
figure. The full curve is the predicted master curve p[u; 3, -41 in (170). (b) Rgorled 
dieleclric loss c''(w)/,rc~ versus U for Ihc same dah as in (0). The full curve is the 
predined master funnion -&p'[u; 3, -41 in (176) 

More extensive data for P m  was obtained by Nakajima and Saito (1958) for an 
annealed sample slowly cooled from the melting point. The degree of crystallinity at 
23 'C was 49%. The annealed sample have a much lower glass transition temperature 
Ts < -80 "C (Hoffman 1952) than that considered above. However, for all the 
available temperatures T 2 70 "C, where scaling parameters could be extracted, the 
data were compatible with a critical spectrum with the same parameters as for the 
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quenched case, i.e. zc = 3.5 and 111, = 2oWLa,,, with log(w2,/2+) = 17.7 - W I T .  
The path in parameter space for this sample is shown by the crosses in figure 5. 
For the lowest temperature mnsidered. T = 70.5 ", it was not possible to extract 
values of g, and g,. Again this path follows approximately the invariance line r = &, 
although there is more scattering in the points for this case. The rescaled data are 
shown in figure 12(a) and 12(b) together with the theoretical curves p [U;  3, -41 and 
-$p'[u;3,-4]. The scaling parameters used in these plots are given in figures 13 
and 11, with the same symbols as used in figure 10. The data are consistent with 
a singular point at T, = (19 f 5) "C and the overall temperature dependencies are 
consistent with that in (18). However, in this case the data show more scattering, 
and the two sets of parameters extracted independently from c' and e'' do not agree 
perfectly as in the previous case. 
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Flgui-e 14. (U) Stalic susceptibiliry CO - e m  v e m s  temperature Cor the data of Scot1 e1 
al (1962). The cusp is located at T. = 110 O C  The full cum for T > Tc shew a 1/T 
law and that lor T < T, a straighl line. Thge e w e s  indicate lhe theoretical predictions 
for a type A fold. The a- indicale also lhe loeation of lhe cusp temperature 
To = (62 =k 4) ' C  and the calorimelric glass transition temperature T, = 50 O C  (b) 
As in (a) lor Ihe dala of Nakaiima and Sail0 (195%. Here the venial axis have been 

. I  

multipceh by a factor 1ooO. 
TO = 19 ' C  and Tg 6 -80 OC. 

arrows indicate the crilical lemperature TC = 45 "C, 

for low frequencies, and this indicates that the chain curve represents a type A fold. 
This conclusion follows also from direct physical arguments. The samples contain a 
crystalline component which essentially does not affect the relaxation spectra. For 
the 4&50% degree of crystallization these regions are relatively small in size and 
disorganized with respect to their mutual orientation. They will therefore act as static 
scattering centers for the relaxation of polar groups in the amourphous regions. The 
appearence of static scattering centers has been treated in various contexts (Giitze ef 
a/ 1981a,b, Giitze and Sjogren 1984, Michel 1987), and is known to give a cusp in 
the static susceptibility as is typical for a type A fold. In the present case the static 
susceptibility is given by 

= - 21md(lnw)r"(w).  n (23) 

The temperature dependence of - cm for the two sets of data for PCFE are shown 
in figure 14. Clearly there is a sharp cusp at T = T, = 45 "C in the data of Nakajima 
and Saito (1958) shown in figure 14(b), while there is an indication of a cusp at 
T = T, = 110 "C in the data of Scott n al shown in figure 14(a). Subtracting some 
contribution in eo - rCQ from the crystalline region tends to give a more pronounced 
cusp (Scott et a1 1962, figure =(a)). In figure 5 the chain line labelled A illustrates 
the situation for the data of Nakajima and Saito (1958). Lowering the temperature 
the path will eventually cross this l i e  while approaching the cusp. For the data of 
Scott et al (1962) a corresponding fold line at T = 110 "C can be drawn between the 
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two most distant squares. In this case T = 75 "C lies below this line. The finding of 
a cusp in the static susceptibiulity at a tempemure T, > Tu is a strong support for 
the theory. In the dynamical dielectric data the presence of this additional singularity 
could show up as an algebraic tail for very low frequencies. 

3. Discussion 

The resulls above show that the relaxation scenarios predicted by the mode-coupling 
theory of supercooled liquids, can be found in real systems. 'Ibgether with the previ- 
ously analysed PET data (Sj6gren 199oa) and the light scattering data on hard-sphere 
colloidal systems (Gdtze and Sjogren 1991a), one may conclude that there is a quan- 
titative agreement between theory and experimental results. This may also be con- 
cluded from neutron scattering measurements on a variety of systems (see Richter et 
al 1989). 

The mode coupling theory was originally formulated for simple one component 
systems with spherical symmetric interactions. It may therefore be argued that it 
cannot be applied to such complex systems as polymers. However, the results ob- 
tained reflect a bifurcation scenario in the non-linear equations (Ioss and Jacobs 
1980), which may exist in all liquids independent of complexity. The shape of the 
relaxation spectra in the P-region described by the function G(z) is ruled by a few 
relevant parameters characterising a topological singularity. Therefore anticipating 
the dynamical behaviour in section 1, we can work backwards and look for systems 
where such relaxations seems to appear. Obviously the results above indicate that the 
A, and A, cases are realised in some polymers. 

The master functions g, for the fold are not completely universal, but depend 
on one single number, namely the exponent parameter A. This depends on the 
structural details entering through the physical coupling constants V(q,kp),  and will 
therefore vary from system to system. Systems with the same value of X will have 
the same scaling functions g,. In general for more complex systems X cannot be 
calculated since the static structure is not known well enough. In data analysis we 
have in practice to treat X as a fitting parameter as was done here for PEOB and 
earlier for PET. So far X and other parameters in the theory have only been calculated 
for simple hard shere (Bengtzelius er al 1984, Barrat er crl  1989) and Lennard-Jones 
(Bengtzelius 1986a,b) systems. For the former system quantitative agreement without 
any adjustable parameters was obtained with light scattering measuremen& on a 
colloidal system (GOtze and Sjagren 1591a). 

For the higher order cuspoids A,; k 2 3 there is complete universality regarding 
the shape of the relaxation function. For the cusp A, for instance, we find the 
Weierstrass function p as the relevant master function independent of the particular 
system studied. Various systems differ only with respect to the cusp parameter pk, 
which enter the amplitude p and the various separation or scaling parameters g,. 
In practice, however, we do not know the precise path followed by a particular 
system in parameter space g,, . . . ,gk, when varying a relevant control parameter l i e  
temperature. Therefore one or more of the parameter g, may have to be treated as 
fitting parameters in analysing a particular experiment For the special case of the 
cusp there are only two relevant control parameters and we can write 
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where X denotes some variable, l i e  pressure or degree of crystallinity, in addition to 
temperature. Therefore by determining the matrix elements A, and the cusp point 
To, X, we can find the relation between the physical control parameters T, X and 
the mathematical ones g,, g,. By a suitable choice of the former ones one can in 
principle map out the complete region around a cusp singularity and possibly verify 
whether the Weierstrass function gives the correct behaviour or not. In particular it 
would be highly interesting to precisely follow various r =const. lines, where p has 
simple scaling properties. These properties are quite different in various sectors of 
the g, - g, plane. (GLitze and S@gren 1989b, Gotze 1989). 

The relaxation functions can also be studied directly in timespace, where com- 
parison can be made with photoncorrelation or neutron spin-echo spectroscopy. 
Considering the cusp we predict the behaviour in (16) for the relaxation function. 
For short times this gives the critical spectrum in (11) with x = 2, while the long time 
behaviour corresponding to the low frequency behaviour in figure 7 gives a - ln(f/rl) 
decay. 'Ibgether with the cusp in the static susceptibility shown in figure 14 this is 
similar to what is found in spin-glasses. It was previously suggested that the spin-glass 
transition is related to an A, cusp below a type A fold (Gotze and Haussmann 1988, 
Got= and Sjogren 1984, 1989b). 

Acknowledgments 

The author is greatful to Professors W Gotze and A Sjalander for useful discussions 
and for comments on the manuscript. This work was supported by the Swedish 
Natural Science Research Council. 

References 

Barral J L, G6V.e W and Law A 1989 1 Phys: C o n d m  Malm 1 7163 
Bengtzelius U 19- Phys Rnr A 33 3433 - 1986b Phys. RN. A 34 5059 
Bengtzelius U, G6tze W and SjBlander A 1984 1. Phys C: Solid Srac Phyx 17 5915 
Binder K and Young A P 1986 Rn! Mod Phys. 58 811 
Cook M, Walls D C and Williams G 1970 Tram Famdoy Soc. 66 2503 
Das S P 1987 PnyS Rn! A 36 211 
Das S P and Mazenko G F 1986 Phys Rnr A 34 2265 
Feller W 1971 An Inaoducrwt Io Robability 7hcory and iLr Applicatim wl2, 2nd edn (New York Wily) 
Frick B, Farago B and Richter D 1990 Phys Rn! Lea 64 2921 
Gijlze W 1984 Z PnyS B 56 139 - 1985 Z. Phys B 60 195 
- 1987 Amorphour mrd Liquid Materiak ed E W h e r ,  G Fritsch and G Jacucd (Dordrecht: Maninus 

- 1989 RK SIh Intannriorwl Svmoosiwn on Selected T m a  in SrarkIical Mechanics (Sineamre World 
Nijhoe) p 34 

_ .  . " .  
ScienfiEc) p 110 

- 1% Liw'dx Fmrbta and the Glm Trm'lion ed D b e s a u e .  J-P H a m  and J Zinn-Justin 
(Amsten& Elswier)- 

- 1990b 1. Phys.: C o n d m  M a w  2 8485 
GBtze W and Haussmann R 1988 Z Phys B 72 403 
Gom W, Lcutheusser E and Yip S 1981 Phys. Rn! A 23 2634 - 1981b Phys R a  A 24 IN8 
GBm W and Sj6gren L 1984 J.  Phys C. Solid Smtc Phys 17 5759 - 1987 Z. Phys B 65 415 



Dynnmical scaling in po&mers 5045 

- 1988 J.  Phya C Solid Stare Phys 21 3407 
- 1989a I .  Phys: C a n d m  Matter 1 4183 
- 1989b.l Phys: C d m  Matter 14203 
- 19918 P h p  Rm A at p- - 1991bJ. Non-cruJt Sol& a1 p m  
Hoffman J D 1952 1. Am Chem Soc 14 16% 
HotIman J D, Williams G and Passaglia E 1966 J.  pblym Sci C I 4  173 
I m  G and Joseph D D 1980 E k " y  Stnbility and BiJbrution 
Ishida Y. Yamatuji K, 110 H and Bkayanagi M 1962 Koli 2. 2 polvm 184 97 
Nalejima T and Saifo S 1958 J.  porVm Sci 31 423 
Michel K H 1987 Z Phya B 68 259 
Pusey P N and van Megm W 1987 Phys Rm Len. 59 2083 
- 159Osa: Bwuptger Phys Chem 94 225 
Richler D, Dianoux A J, Petly W and Teixeh J 1989 ~ a m i c ~  of Dirordmd MoIerids (Berlin: Springer) 
Schweizer K S 1989a 1 Chem Phya 91 5802 
- 1989bJ. Chem Phys 91 5822 
Scott A H, Seheibex D J, Cunis A J, Laurifzen J I and Hoffman J D 1962 J .  R u  Nod Bw: S r d  A 66 

269 
Sj6gren L 1990a Bm'c Feamrres of the Glassy Stale eds Colmenero J and Alegria A (Singapore: World 

Scientific) p 137 
- 1990b 2 Phys B i9 5 
Sj6gren L, Hansen J P and Pollock E L 1981 PM. Rex A 24 1544 
van Megen W and Pusey P N 1991 Phys Rm A at press 

(Berlin: Springer) 


